## Register Now

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi adipiscing gravdio, sit amet suscipit risus ultrices eu. Fusce viverra neque at purus laoreet consequa. Vivamus vulputate posuere nisl quis consequat.

## Solve the following simultaneous equations.${148\over x }+{231 \over y} = {527 \over xy} ;$ ${231 \over x}+ {148 \over y}={610 \over xy}$

Print or Save

Sol:

Consider  ${148\over x }+{231 \over y} = {527 \over xy} ;$

Multiplying throughout by xy

${148 \over x} (xy) + {231 \over y}(xy) = {527 \over xy}(xy)$

148y + 231x = 527
∴  231x + 148y = 527 ...(I)

Now consider,

${231 \over x} + {148 \over y}= {610 \over xy}$

Multiplying throughout by xy

${231 \over x}(xy) + {148 \over y}(xy)= {610 \over xy}(xy)$

∴ 231y + 148x = 610

∴ 148x + 231y = 610 ...(II)

231x + 148y = 527

+  148x + 231y = 610

379x + 379y = 1137

x + y = 3 ...(III)    (dividing by 379)

Subtracting eq. (I) and (II)

231x + 148y = 527

–   148x + 231y = 610

(–)       (–)        (–)

83x  –83 y  =  –83

x – y = –1 ...(IV)   (Dividing by 83)

x + y =3

+  x – y = –1

2x      =2

x =1

Place x = 1 in eq. (III)

1 + y =3

y = 3 – 1

y =2
∴ (x, y) = (1, 2) is the required solutions.

Linear equation in two variables August 04 , 2018 0 Comments 156 views