Login

Register Now

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi adipiscing gravdio, sit amet suscipit risus ultrices eu. Fusce viverra neque at purus laoreet consequa. Vivamus vulputate posuere nisl quis consequat.

Register Now

Lost Password

Lost your password? Please enter your username and email address. You will receive a link to create a new password via email.

In the figure, in ΔABC, point D on side BC such that, ∠BAC = ∠ADC. Prove that, CA2 = CB × CD

Print or Save

Sol.     In ΔABC and ΔDAC
            ∠BAC ≅ ∠ADC                      [Given]
            ∠ACB ≅ ∠DCA                      [Common angle]
∴          ΔABC ~ ΔDAC                      [AA test of similarity]

∴          \({AB\over AD} = {BC\over AC} ={ AC\over CD}\)                   [Corresponding sides of similar triangles are proportional]

∴          \({BC\over AC} = {AC\over CD}\)

∴          AC2 = BC × CD                    [Cross multiplying]

Similarity August 23 , 2018 0 Comments 71 views